Viral evolution under the pressure of an adaptive immune system - optimal mutation rates for viral escape

نویسندگان

  • Christel Kamp
  • Claus O. Wilke
  • Christoph Adami
  • Stefan Bornholdt
چکیده

Based on a recent model of evolving viruses competing with an adapting immune system [1], we study the conditions under which a viral quasispecies can maximize its growth rate. The range of mutation rates that allows viruses to thrive is limited from above due to genomic information deterioration, and from below by insufficient sequence diversity, which leads to a quick eradication of the virus by the immune system. The mutation rate that optimally balances these two requirements depends to first order on the ratio of the inverse of the virus’ growth rate and the time the immune system needs to develop a specific answer to an antigen. We find that a virus is most viable if it generates exactly one mutation within the time it takes for the immune system to adapt to a new viral epitope. Experimental viral mutation rates, in particular for HIV (human immunodeficiency virus), seem to suggest that many viruses have achieved their optimal mutation rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coevolution of quasispecies: B-cell mutation rates maximize viral error catastrophes.

Coevolution of two coupled quasispecies is studied, motivated by the competition between viral evolution and adapting immune response. In this coadaptive model, besides the classical error catastrophe for high virus mutation rates, a second "adaptation" catastrophe occurs, when virus mutation rates are too small to escape immune attack. Maximizing both regimes of viral error catastrophes is a p...

متن کامل

Evolutionary dynamics of viral escape under antibodies stress: A biophysical model.

Viruses constantly face the selection pressure of antibodies, either from innate immune response of the host or from administered antibodies for treatment. We explore the interplay between the biophysical properties of viral proteins and the population and demographic variables in the viral escape. The demographic and population genetics aspect of the viral escape have been explored before; how...

متن کامل

A quantitative quasispecies theory-based model of virus escape mutation under immune selection.

Viral infections involve a complex interplay of the immune response and escape mutation of the virus quasispecies inside a single host. Although fundamental aspects of such a balance of mutation and selection pressure have been established by the quasispecies theory decades ago, its implications have largely remained qualitative. Here, we present a quantitative approach to model the virus evolu...

متن کامل

P164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...

متن کامل

CTL Escape and Viral Fitness in HIV/SIV Infection

Cytotoxic T lymphocyte (CTL) responses exert a suppressive effect on HIV and simian immunodeficiency virus (SIV) replication. Under the CTL pressure, viral CTL escape mutations are frequently selected with viral fitness costs. Viruses with such CTL escape mutations often need additional viral genome mutations for recovery of viral fitness. Persistent HIV/SIV infection sometimes shows replacemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002